A Hyperspectral Imager to Meet CLARREO Goals of High Absolute Accuracy and On-Orbit SI Traceability

Greg Kopp, Peter Pilewskie, Ginger Drake, Joey Espejo,
David Harber, and Karl Heuerman

Laboratory for Atmospheric and Space Physics
and
Joe Rice and Howard Yoon

NIST

Consider Detection of Water Vapor Trend

MODTRAN simulations used to predict changes in outgoing spectral radiance due to 0.4 kg/m² per decade trend.

Define accuracy/stability requirements needed to detect trend.

- Requires <u>broad spectral</u> <u>coverage</u> with moderate resolution.
- Averages for climate require <u>broad spatial</u> <u>sampling</u>.

Sensitivity of Earth-Reflected Solar Radiance to Water Vapor

Largest absolute changes (below right) occur in the sub-saturated VNIR water bands; largest fractional changes (below left) in the wings of the stronger SWIR bands.

Want Improved Radiometric Accuracies in Visible/NIR

• Current instruments have >2% radiometric accuracy

Table 1: Uncertainty Summary for Vicarious Calibration Methods

	Methods/Type of	Uncertainties	Constraints
	Calibration		
	Artificial Test Sites	Actual: 3.5% reflectance-	Requires ground instrumentation
	(Absolute)	based, 2.8% radiance-based	 Requires good atmospheric conditions
		• Expected: 2.8% and 1.8%	Requires specific sensor programming
	Stable Deserts	Actual: 3%	Requires specific sensor programming
	Multi-temporal and	• Expected: 1% with BRDF	Requires non-cloudy images
	Multi-sensor	(bandpass dependent)	
	The Moon	• Expected: 2%	Dynamic range is limited at high end
	Multi-temporal		Req. specific programming & viewing
	The Moon	• Actual: 5-10%	Dynamic range is limited at high end
	Absolute	• Expected: 2%	Req. specific programming & viewing
_			Requires low uncertainty calibration and
	'''		radiometric verification of the moon

Accuracy and stability rely on ground calibrations, onboard lamps, crosscalibrations, solar diffusers, or lunar observations

Best-Known Vis/NIR Radiometric Source On-Orbit Is Sun

Active Cavity Radiometers Measure Solar Irradiance

Total Irradiance Monitor (TIM)

• Accuracy 100 ppm (1 σ) $\rightarrow 0.15 K of$

• Stability 10 ppm/yr (1 σ) 5800 K Sun

• Precision 4 ppm (1σ)

Active cavities tied to electrical references

Spectral Irradiance Monitor (SIM)

Measurement Range Accuracy	0-10 W m ² nm ⁻¹ 0.2 %
Long Term Stability	
λ < 600 nm	0.02 %/yr
λ > 600 nm	0.01 %/yr
Precision	0.01 %
Spectral Resolution	
λ< 280 nm	1 nm
280 nm < λ < 400 nm	5 nm
λ > 400 nm	35 nm

see TSIS poster

Future TSIS/SIM Accuracy 0.1-0.2% With SIRCUS Calibration

SORCE/SIM Spectral Solar Irradiance - 31 March 2006 SSI [W m⁻² nm⁻¹] 500 1000 1500 2000 Wavelength [nm]

Spectral Irradiance Monitor (SIM) is currently operating on SORCE and intended as part of NPOESS/TSIS.

> NIST's Spectral Irradiance and Radiance Responsivity Calibrations using Uniform Sources (SIRCUS) enables < 0.1% spectral radiometric

calibrations.

Short-Wave Requirements to Which IIP Is Designed

Hyperspectral Imager Requirements

Parameter	Value	Units
Spatial Resolution	0.5	km
Spatial Range (cross-track)	200	km
Wavelength (min)	300	nm
Wavelength (max)	2400	nm
Spectral Resolution	10	nm
Relative Std Uncertainty	0.2	%

0.5 km (2.5 arcmin) IFOV

Boulder, CO

Boulder, CO

283

2007 Noted

Fraging Hethologies

Supplier Sols 2005 90 St. 9 105 102 St. 9 105 St.

15° (180 km) (~370 pixels) Earth cross-track

Cross-Calibration Concept

Hyperspectral Imager Requirements

Parameter	Value	Units
Spatial Resolution	0.5	km
Spatial Range (cross-track)	200	km
Wavelength (min)	300	nm
Wavelength (max)	2400	nm
Spectral Resolution	10	nm
Relative Std Uncertainty	0.2	%

Cross-calibration from TSIS gives intended accuracy of 0.2%.

Ratio of reflected (outgoing) to incoming solar radiation measured to <0.2%.

Precisely attenuate sunlight for cross-calibrations with the Total Solar Irradiance Sensor (TSIS) Two spatial/spectral imagers cover 300-1000 and 1000-2400 nm.

Small (~2-cm) telescope optics image the Earth onto spectrographs.

Radiance attenuation methods reduce intensity an accurately known amount, allowing cross-calibrations with Sun.

SOLSTICE Achieves 10⁻⁹ Attenuation

The SOLSTICE instruments flown on UARS and SORCE track stability on-orbit by monitoring stars, which are 9 orders of magnitude dimmer than the Sun.

IIP Overview

• **Intent** is to demonstrate cross-calibration capability from spectral solar irradiance to desired accuracies

What About Polarization?

- Polarizers needed on-orbit for calibrations involving moon and instrument characterization
 - Solar radiance is unpolarized to ~10⁻⁴, but reflected lunar radiances and instrument are not
- Polarimetry at levels needed for aerosols are much more demanding
 - Requires high polarization purity and co-temporal acquisition of orthogonal polarization states
 - Limited field of view
 - Discrete spectral bands

Trade of spectral continuity, spatial coverage, and radiometric accuracy for highly accurate polarimetric measurements has not been done.

But it should be...

TRLs

- TRL 3
 - Optical design with integrated and accurate solar attenuation methods
- TRL 4
 - Laboratory demonstration of completed hyperspectral imager and solar attenuation mechanisms
- TRL 5
 - Quantified solar attenuation accuracies and solar irradiance measurement method
- TRL 6
 - Demonstration at appropriate radiance levels via ground- or air-based solar observations and Earth scenes

A Hyperspectral Imager to Meet CLARREO Goals of High Absolute Accuracy and On-Orbit SI Traceability

PI: Greg Kopp, LASP

Objective

Improve radiometric accuracy of visible & NIR hyperspectral imaging needed for Earth climate studies via cross-calibrations from spectral solar irradiances.

Enable on-orbit end-to-end spatial/spectral imager radiometric calibrations and degradation tracking with 0.2% SI-traceable accuracy.

<u>Approach</u>

Investigate attenuation methods and accuracies allowing a hyperspectral imager to view the Sun and transfer spectral solar radiance measurements to Earth-viewing observations.

Validate solar cross-calibration approach provides desired SI-traceable accuracies using a prototype 300-1050 nm hyperspectral imager with precisely known attenuation methods and a detector calibrated by NIST for linearity across 6 orders of magnitude.

Key Milestones

 Optical Design & Detector Selection 	03/2009
 NIST Photodiode Calibrations Complete 	09/2009
 Detector Array Tested 	06/2010
 Operating Spectrometer (TRL 4) 	08/2010
• Quantified Attenuation Uncertainties (TRL 5)	04/2011
 Lab Calibrations & Field Studies (TRL 6) 	06/2011

CoI: Peter Pilewskie, LASP

 $TRL_{in} = 3$

